Түре	COURSE CODE	NAME OF THE COURSE	L	Τ	Р	CREDIT
DC	NFMC508	Flowsheet Design & Plant Layout	3	1	0	4

COURSE OBJECTIVE

• To prepare students for mineral engineering project design, scheduling and execution roles.

LEARNING OUTCOMES

After successful completion of this course, the students will be able to

- Carry out balancing of circuits using different bases
- Design process flowsheets for various natural resources
- Understand the process of acquiring, planning, scheduling and executing projects
- Understand the economic aspects of engineering

No	TOPICS TO BE COVERED	LECTURE	TUTORIAL	LEARNING
INU.	TOPICS TO BE COVERED	HOURS	HOURS	OUTCOME
1	Introduction: Introduction and basic philosophy of flowsheet design. Significance and challenges. Flowsheet design basics: Different types of flowsheetsand their definitions; Symbols used in flowsheets per BIS, ASTM and ISO norms. Data collection: Basic data required for flowsheet design. Differences in the nature of data for coal preparation and mineral processing.Different approaches adopted for flowsheet design in coal preparation and mineral processing. Site selection: Pithead versus central plant. Material balancing in plant flowsheets: Solid, water, ash and grade balance calculations for estimating flow rates through significant points. Capacity estimation and flowsheet selection: General guidelines for plant capacity estimation; Criteria for optimum flowsheet selection.	7	2	Exposure to the general background of plant design and knowledge of the quantitative aspects of material flow

	Coal preparation and mineral			
2	Flowsheet development for a coking (metallurgical) coal and a non-coking (thermal) coal washery on single and composite (blended) feed bases, including equipment selection and material balance. Flowsheet development for iron, lead-zinc and copper ore on single and composite (blended) feed basis, including equipment selection and mass balancing with specific numerical examples.	8	4	Familiarization with the practices for the design of coal preparation and mineral processing plant flowsheets
3	Flowsheet design for other industrial minerals: Development of flowsheets for placer minerals, limestone, phosphate, quartz, magnesite, kimberlite (diamond-bearing) ores, chromite, manganese ore, gold ore, bauxite, uranium ore, feldspar, mica etc.	8	4	Familiarization with the design of other mineral processing plant flowsheets
4	Utilities and ancillary equipment: Application of material handling units; guidelines on plant layout for coal preparation and mineral processing plants. Environmental issues in plant design: Addressing the environmental issues in coal preparation and mineral processing at the flowsheet development and plant design stage.	4	0	Knowledge of the application of utilities and plant layout considerations and Understanding of the ways to alleviate or minimize the environmental impact of mineral engineering plants
5	Application of software: Development of process flow sheet using MS Excel, ASPEN, etc.	4	2	Familiarization with computer- aided-flowsheet design
6	Plant Layout I: Introduction of Plot Plan, Contour, Concept of levels, Floors, Location of equipment, etc. Design of Plant layout, Building Layout, and	6	1	Understanding of the design of equipment, building and plant

	Equipment Layout. Input details			layout
	required to design a plant layout.			
	Major points considered while			
	designing a plant layout.			
	Plant Layout II:			
7	Layout design of plant buildings -			
	crushing, grinding, flotation,	5	1	
	dewatering, etc. Introduction to		1	
	piping layout. Role of civil and			
	structural inputs in layout design.			
Total		42 + 14 = 56		

TEXT BOOKS:

- 1. Mineral Processing Plant Design by Andrew L. Mular, Roshan Boman Bhappu, SME
- 2. Project Management: A Systems Approach to Planning, Scheduling, and Controlling by Harold Kerzner, Wiley

REFERENCE BOOKS:

- 1. Mineral Processing Plant Design, Practice, and Control: Proceedings. Vol. I and II by Andrew L. Mular, Derek J. Barratt, Doug N. Halbe, SME
- 2. Mineral Processing Design and Operations: An Introduction by Ashok Gupta, Denis Yan, SME
- 3. Mineral Processing Flowsheets by Denver Equipment Company, Society of Mining Engineers of AIME
- 4. A Guide to the Project Management Body of Knowledge (PMBOK Guide) by Project Management Institute (PMI), Project Management Institute